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ABSTRACT 
Due to their fundamental relevance, the number of anatomical macaque brain 

templates is constantly growing. Novel templates aim to alleviate limitations of 

previously published atlases and offer the foundation to integrate multiscale multimodal 

data. Typical limitations of existing templates include their reliance on one subject, their 

unimodality (usually only T1 or histological images), or lack of anatomical details. The 

MEBRAINS template overcomes these limitations by using a combination of T1 and 

T2 images, from the same 10 animals (Macaca mulatta), which are averaged by the 

multi-brain toolbox for diffeomorphic registration and segmentation. The resulting 

volumetric T1 and T2 templates are supplemented with high quality white and gray 

matter surfaces built with FreeSurfer. Human-curated segmentations of pial surface, 

white/gray matter interface and major subcortical nuclei were used to analyse the 

relative quality of the MEBRAINS template. Additionally, 9 CT scans of the same 

monkeys were registered to the T1 modality and co-registered to the template. Through 

its main features (multi-subject, multi-modal, volume-and-surface, traditional and deep 

learning-based segmentations), MEBRAINS aims to improve integration of multi-modal 

multi-scale macaque data and is quantitatively equal to, or better than, currently widely 

used macaque templates. We provide a detailed description of the algorithms/methods 

used to create the template aiming to furnish future researchers with a map-like 

perspective which should facilitate identification of an optimal pipeline for the task they 

have at hand. Finally, recently published 3D maps of the macaque inferior parietal lobe, 

(pre)motor and prefrontal cortex were warped to the MEBRAINS surface template, thus 

populating it with a parcellation scheme based on cyto- and receptor architectonic 

analyses. The template is integrated in the EBRAINS and Scalable Brain Atlas web-

based infrastructures, each of which comes with its own suite of spatial registration 

tools.  

 

INTRODUCTION 
The macaque monkey is an important model system for systems neuroscience. 

Genetic, functional, and anatomical properties of the macaque brain resemble those 

of the human more closely than other animal models which can be used in biomedical 

research. As such the macaque has provided translational benefits and the ability to 

test hypotheses using very precise invasive techniques (e.g., electrophysiology, 

optogenetics, histology, lesions, etc.). Moreover, the application of non-invasive brain 
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imaging techniques in both humans and monkeys has helped to relate hemodynamic 

findings from human research to neuronal properties and demonstrate the translational 

relevance of the macaque as a model system (Seidlitz et al., 2018). 

The existence of anatomical templates is an essential step, however, to anchor and 

integrate a wealth of multi-level neuroscience data (from molecules to maps) in the 

same ordered space and to enable objective cross-level or cross-species 

comparisons, an approach which has recently been implemented for the human brain 

(Amunts et al., 2014). Single subject-based neuroscience is by definition limited by the 

idiosyncratic anatomy and physiology of an individual, hence does not allow us to make 

general statements at population level. Multi-subject analyses, on the other hand, 

bolster scientific validity by increasing statistical power and highlighting reliable 

neurological phenomena across the population (Friston et al., 1999). To facilitate 

comparisons across subjects, data from each subject should be registered to a 

template. Moreover, templates based on multiple subjects are optimal for group-level 

analyses because they possess features that are more representative of the 

population's “average” brain anatomy which offers higher cross-subject validity (Dadar 

et al., 2022; Evans et al., 2012; Fonov et al., 2011).  

Because of their value, macaque neuroscience is populated with increasingly more 

and better anatomical templates (Table 1), each with their own benefits and caveats. 

Fortunately, mathematical transformations allow us to link representations between 

different template spaces. In line with this, also the number of publications (Figure 1) 

related to research using macaque brain templates is increasing.  
However, existing templates have important limitations when they are based on a 

single animal, unimodal images (e.g., T1-weighted images), or when they lack 

sufficient anatomical details (i.e., when the resolution is too low). While single subject-

based templates are less representative of the population’s anatomy, multi-subject 

templates suffer from blurred images because of non-perfect registration between 

images of the individual subjects and inherent averaging-induced smoothing. Recently, 

multi-subject templates have been improved relative to those which were based on 

linear registration methods (Friston et al., 1999) by employing sophisticated nonlinear 

transformation techniques (Brudfors et al., 2020; Friston et al., 1999). These novel 

methods (Brudfors et al., 2020) yielded improved anatomical details and contrast. 

However, nonlinear transformation algorithms on 3D volumes easily result in warping 

artefacts due to their high degrees of freedom and flexibility. Consequently, there is a 
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strong interest to use surfaces for displaying data and registering brain images. Yet, 

multi-subject templates providing surfaces in addition to volumetric representation are 

still rare (see Table 1).  

To address this problem, we propose a first version of a template based on the brains 

of 10 monkeys for which both high-resolution (isotropic 0.064 mm3) T1 and T2 images 

were recorded within the same scan session. Additionally, CT scans are available for 

9 of these monkeys. We are steadily increasing the number of subjects, which will be 

implemented in later versions of the template. Second, we tested and compared 

several non-linear registration algorithms to improve the quality of the average 

template. The multi-brain (MB) toolbox (Brudfors et al., 2020) applied simultaneously 

to T1 and T2 images resulted in the most faithful template and was selected as the 

best solution. Additionally, it generates an underlying tissue classification as part of the 

registration process. Third, our approach allows to integrate an unlimited number of 

modalities (e.g., T1, T2, computed tomography (CT)) using the same processing 

software. Fourth, we provide both volumetric and surface representations of the 

template. Fifth, our template is integrated in the EBRAINS environment 

(https://ebrains.eu/about) and thus enables to compare data from multiple species 

using the same meta-platform. Sixth, we started to populate the template with a 

human-curated segmentation of major subcortical nuclei and with recently published 

maps of the macaque monkey motor, parietal and early visual cortex based on cyto- 

and receptor architectonic analyses (Niu et al., 2020; Niu et al., 2021; Rapan et al., 

2021; Rapan et al., 2022). Seventh, we integrated new methods for data processing in 

the macaque based on recent AI developments and applications in neuroscience, 

(e.g., deep learning for skull stripping and segmentation). Last, but not least, several 

of the animals with brain anatomies included in this template are still alive, so new data 

can be acquired to populate and enrich the atlas. 

We would like to emphasize that the goal of the study was not only to provide a 

template of the macaque monkey brain, but also to assess multiple existing pipelines 

in order to provide the reader with information concerning which pipeline is most 

optimal for different goals. We believe that it will facilitate work of future users relying 

on these pipelines. Although this is not the first time a macaque template is proposed, 

this would be the first time that a template is built with data from the same monkeys 

and includes multi modal volumetric templates (T1, T2, CT), surface templates, and 
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segmentations of major brain regions. Moreover, the volume and surface templates 

are also populated with experimental data.  

 

MATERIALS AND METHODS 
Subject information 
10 rhesus monkeys (Macaca mulatta; 3 female) were used in this study. The monkeys 

were young adults, with an average age of 5.30 year (6.33 for female, and 4.86 for 

male) when the anatomical scans were collected. The monkeys weighted 6.33 kg on 

average (5.50 kg for the females, and 8.00 kg for the males) at the time of scanning. 

Animal care and experimental procedures were performed in accordance with the 

National Institute of Health’s Guide for the Care and Use of Laboratory Animal, the 

European legislation (Directive 2010/63/EU) and were approved by the Animal Ethics 

Committee of the KU Leuven. Weatherall reports were used as reference for animal 

housing and handling. All animals were group-housed in cages sized 16-32 m3, which 

encourages social interactions and locomotor behavior. The environment was enriched 

by foraging devices and toys. The animals were fed daily with standard primate chow 

supplemented with fruits, vegetables, bread, peanuts, cashew nuts, raisins and dry 

apricots. They had free water access during the period that the anatomical scans were 

acquired. All animals participated in behavioral, fMRI, electrophysiology and/or 

reversible perturbation experiments afterwards (Arsenault et al., 2014; Arsenault and 

Vanduffel, 2019; Balan et al., 2019; Caspari et al., 2015; Herpers et al., 2021; Janssens 

et al., 2014; Li et al., 2022; Murris et al., 2021; Yao and Vanduffel, 2022). 

 

Acquisition of anatomical MR and CT images 
High-resolution (400 μm isotropic voxel size) T1- and T2-weighted images were 

acquired on a 3T Siemens PrismaFit scanner while the animals were under 

ketamine/xylazine anaesthesia. A custom-built single loop coil with a diameter of 12 

cm was used as receiver, and the body coil from the scanner was used for 

transmission. T1 images were acquired using a magnetization prepared rapid gradient 

echo (MPRAGE) sequence (repetition time (TR) = 2700 ms, echo time (TE) = 3.5 ms, 

flip angle (α) = 9°, inversion time (TI) = 882 ms, matrix size 320×260×208) and T2 

images were acquired using a sampling perfection with application optimized contrasts 

using different flip angle evolution (SPACE) sequence (TR = 3200 ms, TE = 456 ms, 

variable α, matrix size 320 × 260 × 208, Turbo Factor = 131, echo spacing = 6 ms), as 
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in (Glasser and Essen, 2011; Van Essen et al., 2001). During a single scan session, 

7–12 T1 images and 4–5 T2 images were acquired from each subject (Li et al., 2021). 

Additionally, for 9 of the animals, high resolution CT (324x324x200 matrix size; 0.25 

mm isotropic; on a Somatom Force Siemens CT scanner) scans were acquired in 

different sessions while the animals were under ketamine/xylazine anaesthesia. 

Pre-processing of these images for their compatibility with Freesurfer and MB 

constituted the first step of the pipeline developed for the development of the template 

(Figure 2A). 

 

Anatomical MR and CT pre-processing (Autio et al., 2021). 
The pre-processing consisted of several steps, and in some of these we used multiple 

applications/functions from different packages. Note that each of these packages 

performs the same kind of processing but using different approaches, and the most 

optimal solution is not necessarily the same for different subjects. The reason for this 

approach was to obtain the optimal result for each individual brain. This could not be 

achieved by applying the same algorithm to all subjects, since optimization requires 

individualization. The pre-processing steps are: 

- DICOM to NIFTI conversion of both MR and CT datasets using dicom2niix (Li 

et al.), the fslmatsh function of FSL (Woolrich et al., 2009) or the mri_convert 

function of FreeSurfer (Fischl, 2012), depending on the individual subject. 

- Per subject, registration of the CT to the corresponding anatomical MR was 

performed using FreeSurfer, or ANTS (Avants et al., 2011), or ITK-SNAP 

(Yushkevich et al., 2006). 

- Conversion of all volumes to the FreeSurfer-conform standard (256x256x256, 

orientation LIA (left-inferior-anterior)) using mri_convert. The FreeSurfer-

conform standard requires 1 mm isotropic voxel size. To satisfy this condition 

without losing resolution, we arbitrarily changed the voxel size in the image 

header from 0.4 to 1 mm. 

- Rigid registration of all T1 volumes to a unique template (which was the average 

of all individual T1 volumes which were registered using a pre-run of the multi-

brain (MB) toolbox for SPM12 on the original T1 volumes) using a combination 

of FreeSurfer (the spmregister function), ANTS (the antsRegistration function) 

or the MB toolbox. T2 and CT volumes were then registered using the unique 
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transformation matrices (generated when the T1 volumes were registered) for 

each subject. 

- Bias field correction of the MR anatomies following the Human Connectome 

Protocol adapted to the macaque (Autio et al., 2021; Hayashi et al., 2021; 

Marcus et al., 2013). 

- To generate symmetrical templates, we added to the existing set of volumes 

(separately for T1, T2 and CT) their left-right flipped version generated using 

FreeSurfer. 

 

Generation of the volumetric anatomical templates using T1 and T2 anatomies 
MEBRAINS template construction with the multi-brain toolbox 

The main processing tool for building the MEBRAINS template was the MB toolbox of 

SPM12 (Brudfors et al., 2020) (https://github.com/WTCN-computational-anatomy-

group/mb), and as input we used information from both T1 and T2 images, which were 

obtained for each monkey in the same scanning session (Figures 2B, 3). We chose 

MB because it generates a multimodal probabilistic tissue classification model while 

performing the nonlinear registration, rather than just using voxel intensities directly. 

This approach has been shown to be a more robust method of registering medical 

images (Klein et al., 2009; Sotiras et al., 2013). Furthermore, the algorithm (Brudfors 

et al., 2020) used by MB can integrate many imaging modalities (e.g., T1, T2, DW, 

CT), and can be applied with or without prior pre-processing (e.g., skull stripping). 

Accordingly, we took advantage of the high-resolution CT scans of the same subjects, 

applied the same transformations as those used to register the corresponding T1 and 

T2 images to the reference template, and averaged the resulting CTs to build the CT 

template. Thus, multi-brain allowed us to build the following three templates using T1, 

T2 and CT brain images of 10 monkeys: MEBRAINS_T1, MEBRAINS_T2 and 

MEBRAINS_CT, respectively. We generated the volumetric templates as follows 

(Figure 3): 

i) Learn the MB tissue probability model to create an optimal multimodal population 

template. We adapted Example 1 from the MB repository 

(https://github.com/WTCN-computational-anatomy-group/mb). As input we used 

the set of 10 pairs of T1 and T2 images and additionally the same set of images 

mirrored across the midsagittal plane to create a symmetric template. This group-
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wise image registration generated the following datasets: an optimal K class tissue 

template; optimal intensity parameters; deformations that are used to warp between 

different volumes; tissue segmentations; and bias-field corrected versions of the 

input scans. In general, we kept the default settings to run the MB modelling (as in 

Example 1 mentioned above). The following parameters were modified in our script: 

regularization of the nonlinear registration (changed from 1 to 2), number of tissue 

types K (set to 14), and voxel size (set to 1).  

ii) Register the T1 and T2 individual volumes to the MB tissue model using the MB 

deformations generated during the learning step, as in example 2 of the MB 

repository (https://github.com/WTCN-computational-anatomy-group/mb). We used 

a 3rd degree B-spline interpolation algorithm, and co-registered the CT volumes 

with the T1 volumes. 

iii) Create T1, T2 and CT templates by averaging the corresponding individual images 

registered to the MB tissue model. Intermediate T1, T2 and CT templates are 

created by gradually averaging more and more individual images that are registered 

to the implicit MB template.  

iv) Linear transformation of the templates to set each origin to the centre of the anterior 

commissure as identified in a sagittal section (voxel 108,128,70 in RAS-

coordinates, i.e., with voxel 0,0,0 at the left-posterior-inferior corner). 

v) Rescale the volumes to the original resolution of 0.4 mm isotropic voxels.  

vi) Check the stereotaxic orientation of the template. Since the original brains were 

acquired using a stereotaxic frame, we verified that the resulting average has the 

aural fixation points and the infraorbital ridge nearly in the same horizontal plane, 

which is a requirement of being aligned to the Horsley-Clarke stereotaxic frame 

(Seidlitz et al., 2018). 

Comparative template: ANTS10 

The ANTS version of the template was built as a comparison with MB in terms of 

warping artefacts. Therefore, we used the exact same datasets that were used for the 

computation of the MEBRAINS template. We followed the processing described in 

(Seidlitz et al., 2018) and used whole-head images so that the template would 

accurately represent the brain-skull boundary. The main processing steps were: 

i) Align each of the 10 preprocessed subject images to an independent coordinate 

space using a 6-parameter rigid-body transformation. 
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ii) Create the initial target image for the template by performing a voxel-wise average 

of the 10 subject images.  

iii) Normalization of the variations in image intensity across each volume by an N4 bias 

field correction (Avants et al., 2011).  

iv) Create the population-averaged template using symmetrical group-wise 

normalization, which is an iterative nonlinear registration process (Seidlitz et al., 

2018). Each brain was aligned to the current target image via a 12-parameter affine 

and a nonlinear (diffeomorphic) transformation. These aligned images were 

averaged to generate an improved template image. The inverse of the affine and 

diffeomorphic transformations was averaged across subjects, scaled, and applied 

to this template image to align it closer to the original input anatomies. This process 

was iterated, with the updated template image serving as the new target image for 

registration with the original subject images, until convergence between successive 

target images occurred. 

 

Generation of a MEBRAINS surface template 
Surface representations of the brain enable a more precise spatial localization and 

reduce the occurrence of errors arising from the spatial proximity of brain structures 

that are actually located at quite a distance from each other along the cortical ribbon 

(Logothetis et al., 2001; Zhu and Vanduffel, 2019). Additionally, they are a prerequisite 

for generating cortical flat maps, which are useful tools for the analysis and 

visualization of functional and structural neuroimaging datasets (Sultan et al., 2010; 

Van Essen et al., 1998; Vanduffel et al., 2001; Vanduffel et al., 2014), particularly for 

topographic representations such as retinotopy (Arcaro and Livingstone, 2017; 

Janssens et al., 2014), somatotopy (Arcaro et al., 2019) and tonotopy (Bodin et al., 

2021; Erb et al., 2019; Petkov et al., 2006). To achieve this, we used both the 

MEBRAINS_T1 and MEBRAINS_T2 volumetric templates to create a MEBRAINS 

surface template (Figure 2C). We began with the output of the MB toolbox, as it is able 

to automatically generate precise segmentations of diverse tissue classes, including 

the white matter. Next, human-curated white and gray matter segmentation were 

performed using FreeSurfer (Fischl, 2012) and the non-human primate version of the 

Human Connectome Project pipeline (Autio et al., 2020)(Autio et al., 2021). In this 

process, the pial and white/gray matter interface (white matter surface) were generated 
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from the T1 images, and the T2 images were used to accurately model the pial surface 

and remove the effect of cerebrospinal fluid and pial veins.  

 

Generation of a MEBRAINS skull surface template 
Given the importance of information concerning the shape and thickness of the skull 

for pre-surgical planning, we also generated a mesh coding for the inner and outer 

skull surfaces. To this purpose, we used data from both the CT and T1 templates, 

followed by human-curation to create the skull mask. The skull surface was generated 

using FreeSurfer and smoothed with 10 iterations of smoothing. 

 

“Populating” the MEBRAINS template: human-curated segmentations of 
subcortical nuclei and integration of cyto- and receptor architectonically 
informed cortical maps 
We started to populate the template by complementing MEBRAINS with human-

curated segmentations of several subcortical structures. We manually delineated the 

amygdala, anterior commissure, nucleus accumbens, caudate, claustrum, putamen, 

and pallidum on coronal sections of the left hemisphere of the MEBRAINS_T1 

template, whereby all three stereotactic planes were closely examined to reduce 

inconsistencies across slices. This segmentation was performed using MRIcron 

(Rorden and Brett, 2000) and ITKsnap (Yushkevich et al., 2006), and identification of 

structures was based on local contrast differences in both the EBRAINS_T1 and the 

EBRAINS_T2 templates, thereby relying on corresponding sections of the 2nd edition 

of the Atlas of the Rhesus Monkey Brain (Saleem and Nikos, 2012). This manual 

delineation was performed only for the left hemisphere and structures were then 

mirrored (using the MRIread function of MATLAB and FreeSurfer) to populate the right 

hemisphere of the template. These human-curated segmentations were also essential 

for our quality assessment of MEBRAINS and to develop workflows for integrating 3D 

volumes into MEBRAINS space. Specifically, these segmentations i) served as a 

reference when evaluating the quality of (semi)-automated segmentation approaches, 

and ii) generated target outputs (ground-truth) for training deep neural networks to 

automatically segment brain structures (Henschel et al., 2020). 

Additionally, we used the workflow to integrate other templates into MEBRAINS, for 

example, to anchor the frequently used D99-atlas and our recently published 3D cyto- 
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and receptor architectonic maps of the macaque parietal (Impieri et al., 2019; Niu et 

al., 2020; Niu et al., 2021), premotor and motor (Rapan et al., 2021) cortex, depicted 

on the Yerkes19 template (Donahue et al., 2018; Van Essen et al., 2012) into 

MEBRAINS space (Figure 2D). Since the MEBRAINS template is symmetrical, and 

these parcellations were only available for the left hemisphere of the Yerkes template, 

the ensuing maps had to be human-curated using ITKsnap (Yushkevich et al., 2006), 

then mirrored to the right hemisphere of MEBRAINS using MATLAB and FreeSurfer. 

 

Registration of 3D datasets to MEBRAINS 
Since it is essential to link MEBRAINS to commonly used template spaces, we 

developed a multi-method workflow to register 3D data to MEBRAINS. Independent of 

the method/algorithm used, registration of 3D volumes can be achieved as follows: 

• Step 1. Preparatory pre-processing of the data to roughly adjust the image 

geometry (i.e., resolution, dimensions, position) performed with FreeSurfer, FSL 

(Woolrich et al., 2009) and MATLAB. This step does not necessarily require MB. 

• Step 2. Register the brain anatomy (e.g., other template volume or individual 

anatomy) to MEBRAINS. This process is achieved by calculating and applying the 

transformation functions (matrices and deformation volumes). Noteworthy, the 

transformations generated for a specific volume (e.g., a template) can be applied 

to different entities (e.g., atlas, connectivity maps) represented in that space. The 

specifics of the registration performed with MB are found under 

“https://github.com/WTCN-computational-anatomy-group/mb - Example 3: Fitting a 

learned MB model”, and were applied to individual brain anatomy/template 

volumes. 

• Step 3. Evaluate the quality of the registration and improve it by adjusting different 

parameters of the registration algorithm. If the object to be registered is a template 

brain or an individual anatomical dataset, the process is finished. We used 

“https://github.com/WTCN-computational-anatomy-group/mb - 2. Warping with MB 

deformations - image-to-template – pull” to apply the deformation generated in the 

previous step to the brain anatomy/template. 

• Step 4. If we register atlases, activation maps, retinotopic maps, or connectivity 

maps to MEBRAINS, a supplementary step may be necessary because such data 

require an underlying reference anatomy. This reference anatomy should follow 

steps 1 to 3, to generate the corresponding transformations/deformations functions 
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to be applied. It is important to remember that resampling algorithms can be 

nonlinear (e.g., cubic) when transforming anatomical volumes, and resampling 

algorithms used to register atlases (representing discrete values) should be linear 

or nearest-neighborhood. The specifics for registrations performed with MB are 

listed in “https://github.com/WTCN-computational-anatomy-group/mb; 4. Register 

and warp atlas to MB space“. 

Since no single tool functions seamlessly, the best strategy is to combine functions 

from different software packages. This is illustrated by the existence of an open-source, 

community-developed initiative like Nypype (Gorgolewski et al., 2011) 

(https://nipype.readthedocs.io/en/latest/), facilitating interactions between different 

software packages (e.g., ANTS, SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI, 

Slicer, DIPY).  

Like all methods, MB also harbors some problems. For example, recall that the 

MEBRAINS template is built using both T1 and T2 weighted images. If other volumes 

have to be registered to MEBRAINS, these data contain optimally both T1 and T2 

modalities. Furthermore, if we start from already skull-stripped anatomies instead of 

the whole head, the registration may be sub-optimal. 

 

A library of registration methods 

Although we selected MB as our method of choice to generate the average template, 

the resulting MEBRAINS template can be used with any registration method. The most 

relevant software packages are summarized below: 

a. Multi-brain (Brudfors et al., 2020) – using MATLAB and toolboxes. 

b. ANTS (Avants et al., 2009) – using either the RheMAP (Sirmpilatze and Klink, 2020) 

Jupiter notebook (https://github.com/PRIME-RE/RheMAP.git), or 

antsRegistrationSyNQuick to generate the registration and antsApplyTransforms to 

apply it. 

c. AFNI (Cox, 1996) – generate the registration with 3dQwarp and apply it with 

3dNwarpApply. 

d. MINC (Vincent et al., 2016) – generate the registration with minctracc and apply it 

with mincresample. 

e. ART (Ardekani et al., 2005) – generate the registration with 3dwarper and apply it 

with applywarp3d. 

f. ITKsnap (Yushkevich et al., 2006) – for illustrative affine registrations.  
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g. FSL (Woolrich et al., 2009) – generate registrations with flirt and fnirt, and apply it 

with applywarp. 

h. Jip (http://www.nitrc.org/projects/jip) – using jip_align in two stages: auto-align 

affine followed by auto-align non-lin. 

i. DISCO (Ardekani et al., 2005) – using the Diffeomorphic Sulcal-based COrtical 

(DISCO) registration. 

j. FreeSurfer (Fischl et al., 1999) – perform either a surface based registration using 

mris_register, or a combined surface and volume morph method (Postelnicu et al., 

2009; Zöllei et al., 2010) using mri_cvs_register. The latter approach accurately 

registers both cortical and subcortical regions, establishing a single coordinate 

system suitable for the entire brain.  

Many of these tools (a - f) can rapidly register source with target volumes. The others 

(especially i - j) are computationally costly and are mainly recommended when the 

‘fast’ methods yield suboptimal results.  

This library of methods raises a fundamental question: which strategy should one use? 

We propose the following: 

a. Use your own knowledge/preference but consider the quality of the source anatomy 

that has to be registered (e.g., template). 

b. Try-N-select-winner. The strategy works with anatomies and involves the following 

straightforward steps: 

1. Select a registration method and optimize the results by adjusting the 

parameters of the algorithm. 

2. If the result is not satisfactory, add a new method and repeat 1. 

3. Compare the existing results and select a winner. 

4. If the winner is not satisfactory, repeat 2. If the winner meets your needs stop 

the process. We list a few recommendations regarding the “try-N-select-winner” 

strategy: 

O1. N should be as small as possible. 

O2. Try to optimize a method before adding another one. 

O3. The quality of the registration can be evaluated: i) By human-curation 

(although laborious, this is the most reliable method). ii) Automatic quantification 

of the quality of the registration relative to MEBRAINS. After masking the 

volumes with the MEBRAINS-mask, the following parameters can be evaluated: 

Pearson correlation; Normalized mutual information; SNR and peak-SNR; Mean 
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Squared Error; Structural Similarity Index; Jaccard index; Dice Score; Hausdorff 

distance; Focal parameters for 3d images from the Image Quality Index toolbox 

(bias, correlation, divergency, entropy difference, root of mean squared error); 

Universal Image Quality Index (Vaiopoulos, 2011). All parameters should be 

normalized and scaled (0 – completely dissimilar; 1 - identical images), and can 

be calculated using MATLAB. The winner registration is established as the 

maximum value of the evaluated parameters, or of a metric defined on the space 

of all parameters (e.g., Euclidean distance). 

c. Run-N-select-high-probability-values. The strategy works with volumes with 

discrete values such as atlases and involves the following steps: 

1. Select N registration methods and run the registration of the same atlas (N ~ 5). 

2. Evaluate the quality of the registration and select M (M ≤ N) of the best 

registrations. 

3. Build the probability distribution of values in corresponding voxels of the M 

selected volumes. 

4. Build the resulting volume by giving to each voxel the value that has the 

occurrence probability greater than an optimal threshold. The optimal threshold 

depends on the overall probability distributions. 

Note that higher N values are optimal. For example, we increased the number 

of registrations of the D99 atlas using both the registration of the D99-atlas to 

MEBRAINS and of the D99 atlas in NMT v2.0 space to MEBRAINS. 

 

Deep learning-based neuroimaging pipeline for automated processing of 
monkey brain MRI scans  
Deep learning is becoming popular in the analysis of brain MR images, and is more 

widely used to MRI compared to other types of medical images (Zhao and Zhao, 2021). 

Deep learning has been used for pre-processing and analysing MR images, including 

brain segmentation, registration, noise reduction, resolution enhancement, restoration, 

and reconstruction (Zhao and Zhao, 2021). It has also been instrumental for computer-

aided diagnosis, including lesion and tumor detection, and diagnostics of psychiatric 

and neurodegenerative disorders (e.g., Schizophrenia, Alzheimer's disease, 

Parkinson’s disease, brain age estimation). 



15 
 

Traditional neuroimaging pipelines involve computationally intensive, time-consuming 

optimization steps, often requiring manual interventions (Henschel et al., 2020). To 

avoid these issues, we prepared two deep neural networks-based tools to work with 

the EBRAINS template: 

U-Net Brain extraction tool for nonhuman primates (Wang et al., 2021). 

This is a fast and stable U-Net based pipeline for brain extraction that exhibited 

superior performance compared to traditional approaches using a heterogenous, 

multisite non-human primate (NHP) dataset. The pipeline includes code for brain mask 

prediction (https://github.com/HumanBrainED/NHP-BrainExtraction.git), model-

building, and model-updating, as well as macaque brain masks of PRIME-DE data 

(https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html). A major advantage of the 

pipeline is that it uses a transfer-learning framework leveraging a large human imaging 

dataset to pre-train a convolutional neural network (U-Net Model), which is transferred 

to NHP data using a much smaller NHP training sample. Furthermore, the 

generalizability of the model can be improved by upgrading the transfer-learned model 

using additional training datasets from multiple research sites in the Primate Data-

Exchange (PRIME-DE) consortium (136 macaque monkeys with skull-stripped masks 

repository, publicly available) (Milham et al., 2018). 

We applied the package by carrying out these steps: 

a. Minimal pre-processing of the T1 images of the 10 monkeys included in the 
MEBRAINS template: 

- Conformed all images (FreeSurfer’s standard). 

- Spatial adaptive non-local means filtering (using ANTS’s DenoiseImage). 

- Bias field correction (using ANTS’s N4BiasFieldCorrection) 

b. Mask prediction - use existing trained models to predict the mask for our data. 

The package provides 15 pre-trained models using different sets of data for transfer 

of learning and upgrading results. Each of the 15 models predicted a mask for each 

macaque anatomy including: 

- 10 monkeys used to build MEBRAINS template, and 3 supplementary monkeys 

from our lab that will be included in later versions of the template. 

- 21 monkeys from PRIME-DE (19 UC Davis and 2 U Minnesota). 

The goal of this process was to select the best performing models on our data. 

c. Supplementary model updating - use the existing trained models and additional 

training datasets to improve the generalizability of the model: 
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- Select 7 models showing high performance in (b). 

- Update each of these 7 models by supplementary training (40 epochs) using: 

• Training data – 34 T1 images (10 used for MEBRAINS + 3 new from our lab; 

21 from PRIME-DE (19 UC Davis and 2 U Minnesota)). 

• Testing data: 66 T1 images (34 training data; 32 new data from KU Leuven). 

For all T1 images, ground-truth was derived from human-curated masks either 

created by us or taken form the repository from the U-net brain extraction package 

(https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html, 

https://github.com/HumanBrainED/NHP-BrainExtraction.git). 

d. Applications of the results: 

- Use N-models to predict N versions of the mask for the same whole brain 

anatomy. N includes the 7 selected U-net models with their original parameters, 

and the 7 upgraded models (step c). 

- Select the best result(s). 

- If there was a clear winner, we used it. If there were more than one good 

approximations of the mask, we built a probability distribution for values (0 or 1) 

in each voxel. The final mask can be built by optimal thresholding of the 

probability distribution (“Run-N-select-high-probability-values” strategy). 

In all cases, the goodness of the predicted mask was evaluated by visual inspection 

and calculation of the dice score.  

 

Relative quality of the MEBRAINS template 
To quantitatively evaluate the quality of our MEBRAINS and ANTS10 templates 

relative to each other and to that of other templates, we used a method inspired by 

(Seidlitz et al., 2018). We chose for comparisons the following T1 templates: our 

MEBRAINS and ANTS10 templates, the NMT v2.0 (Seidlitz et al., 2018) and Yerkes19 

(Donahue et al., 2018; Van Essen et al., 2012) templates, and the combination of the 

T1/T2 images of MEBRAINS and ANTS10. The two latter datasets were introduced to 

emphasize the usefulness of our multimodal approach. The processing of these 6 

datasets included the following steps: 

a. For each template, we segmented the amygdala (Am), caudate (Cd), claustrum 

(Cl), nucleus accumbens (NAc), putamen (Pu), white matter (WM), cortical gray 

matter (GM) and lateral ventricle (LV). 
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b. Normalization of the variations in T1 image intensity across each volume by N4 

bias field correction (Avants et al., 2011) (using ANTS’s N4BiasFieldCorrection). 

T1/T2 images were generated from the original T1 and T2 images (without N4 bias 

field correction). 

c. Using volume contraction (AFNI), we selected the kernel of each segment by 

excluding the external 3 voxels thick shell of each sub-cortical region.  

d. We calculated the average gray matter (meanGM) of N randomly selected voxels (N 

= 50) for each segmented region (Am, Cd, Cl, NAc, Pu, and GM). For the white 

matter, we calculated the average white matter intensity (meanWM) of all voxels from 

the WM kernel. For LV, we calculated the standard deviation of the intensity of the 

cerebral spinal fluid (stdCSF) of N randomly selected voxels. Both means and 

standard deviation included equal numbers of randomly selected voxels from the 

left and right hemisphere (N = 50). These values were used to calculate the 

following parameters, that represent contrast-to-noise (C2N) (Jang et al., 2022) and 

relative difference (KI): 

C2N = (meanWM – meanGM)/stdCSF 

KI = 2*(meanWM – meanGM)/ (meanWM + meanGM) 

e. To evaluate the mean distribution of C2N and KI we performed the following steps: 

e1. Compute the mean of C2N and KI by repeating their calculation 25 times, 

each time using a new set of 50 randomly selected voxels. 

e2. Repeat step e1 2500 times to estimate the distribution of mean of the 

parameters. 

e3. Steps e1-e2 were repeated for all 6 templates (the four T1 and the two T1/T2 

datasets).  

e4. Calculate the median values for each template and run a Kruskal-Wallis test 

followed by multiple comparison corrections.  

 

RESULTS 
MEBRAINS volumetric and surface templates 
Our central goal was to build a population-based macaque brain template using 

multimodal imaging data to overcome limitations in the existing templates. Accordingly, 

we used MB to build three volumetric templates based on T1, T2 and CT brain images 

of 10 monkeys: MEBRAINS_T1 (Figure 4A), MEBRAINS_T2 (Figure 4B) and 

MEBRAINS_CT (Figure 5), respectively.  
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Additionally, we created a second set of templates with the T1 and T2 brain images 

from the same 10 monkeys, but using ANTS, one of the few alternative tools besides 

MB that can rely both on T1 and T2 images for building templates (ANTS10_T1, Figure 

6A and ANTS10_T2, Figure 6B). We found ANTS to result in a poorer tissue contrast 

compared to MB. Hence, we did not use it for our novel template, but to quantitatively 

compare the quality of the MEBRAINS templates relative to others. 

We created a surface version of MEBRAINS, that enables users to choose between 

folded or flattened representations of the template’s cortex. To achieve this, we used 

a combination of MB, FreeSurfer and human curation. Although the probabilistic tissue 

segmentations generated by MB during the group-wise image registration do not 

always correspond to anatomical parts of the brain, some of them provide excellent 

approximations of the white and gray matter (Figure 7A, B). A supplementary 

postprocessing using FreeSurfer and human curation resulted in optimal white and 

grey matter segmentations of MEMBRAINS (Figure 7C; 8A, B). Finally, we also created 

the MEBRAINS skull surface template using the MEBRAINS CT and T1 volumetric 

templates and FreeSurfer. This template represents the inner and outer bone surfaces 

(Figure 8C). 

 

“Populating” the MEBRAINS template 
It is essential for a template to be populated with neuroscience data. Indeed, a template 

becomes gradually more valuable by anchoring research results such as cyto-and 

myeloarchitectonic information, receptor distributions, task related activations, 

connectivity maps, electrophysiological data, and topographic maps such as 

retinotopic, somatotopic and tonotopic maps. In addition, it is important to link different 

template spaces. To start addressing these goals, we provided - in addition to white 

and grey matter segmentations based on MB with a postprocessing step involving 

FreeSurfer (Figures 7C; 8A, B) - a human-curated segmentation of the anterior 

commissure and several major subcortical structures including the amygdala, nucleus 

accumbens, caudate, claustrum, putamen and pallidum (Figure 9A).  

Furthermore, our recently published 3D cyto- and receptor architectonically informed 

maps of the macaque monkey motor, premotor and parietal cortex were warped from 

YERKES19 space to the MEBRAINS surface template (Figure 9B), which were also 

represented on a cortical flat map (Figure 9C), and transformed into volumetric 

MEBRAINS space (Figure 9D). Since these areas were only available on the left 
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hemisphere of the Yerkes19 template, and the MEBRAINS template is symmetrical, 

areas were mirrored to its right hemisphere.  

 

Registration of 3D datasets to MEBRAINS 
The purpose of a template is to offer a standardized stereotaxic space for the analysis 

and/or visualization of neuroscience data, often requiring the co-registration of different 

volumes (e.g., individual brain anatomies, templates). Given the aforementioned 

advantages and limitations of MB, we propose a multi-method workflow with 4 major 

steps to integrate data into MEBRAINS space: Steps 1-3 encompass standardized pre-

processing procedures, the actual computation of transformation functions (such as 

matrices and deformation volumes) necessary to register an anatomical image to 

MEBRAINS, as well as a quality assessments and improvements of the registration. 

Step 4 is only required if a data set instead of a structural anatomical volume needs to 

be registered, such as retinotopic maps, connectivity maps or parcellation schemes. In 

this case, steps 1-3 are performed with the reference anatomy, and the 

transformations/deformations functions are then applied to the associated datasets.  

To demonstrate the validity and flexibility of our workflow, we first describe the result 

of our registration procedures when applied to some frequently used macaque brain 

templates, although they can be applied to any individual or averaged anatomical 3D 

volume. In a second step, we provide an example of how Step 4 can be implemented 

to transform a parcellation scheme of the macaque brain from the Yerkes19 surface to 

the MEBRAINS surface and volumetric templates. 

 

Registration of other macaque brain templates to MEBRAINS 

We considered the following macaque brain templates (Table 1; Figure 10): NMT v2.0, 

Yerkes19, D99, MNI macaque, F99, INIA19, ONPRC18 and 112RM-SL. Most of these 

templates are uni-modal (T1-weighted images) and skull-stripped, whereas 

MEBRAINS is a multi-modal (T1 and T2) template which includes the skull. Thus, these 

comparisons enabled us to test the aforementioned limitations of MB, and to 

demonstrate the usefulness of multi-method workflows for working with MEBRAINS. 

We used several methods (“Try-N-select-winner” strategy, see methods) from the 

library described in the methods (a – g; MB, ANTS, AFNI, MINC, ART, ITKsnap and 

FSL) to register the selected templates to MEBRAINS. MB performed well for the T1 

templates in which the skull was not stripped (e.g., NMT v2.0), yet produced distorted 
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registrations for many of the skull-stripped templates. The most optimal registration 

method for all registered templates was ANTS. Figure 10 shows ANTS10_T1, the 8 

selected templates, and a meta-template (the average of the ANTS10_T1, and all 

template datasets, excluding 112RM-SL), all registered to MEBRAINS using ANTS. 

Furthermore, figure 10 also provides a unique opportunity to compare other templates 

with MEBRAINS. At qualitative level, MEBRAINS reveals comparable anatomical 

details as NMT V2.0, unlike the other templates.  

Figure 11 shows a quantitative evaluation of the quality of the registrations of the 

different templates with MEBRAINS (in Figure 10) using Pearson correlation and focal 

entropy differences -which was scaled to improve comparisons with the correlation 

method (0 – total dissimilarity; 1 – total similarity). Focal entropy was calculated for 

each coronal section using a symmetrical window radius of 7 voxels centered on each 

voxel and the results were averaged. Next, the differences between the average values 

for the registered and the reference (MEBRAINS) anatomies were calculated for each 

coronal section and averaged to obtain a value characterizing the entire volume. Both 

parameters provide an evaluation of how similar the compared anatomies are. 

Considering the range of values for both parameters (0.92-0.99), we conclude that all 

registrations have a good and relatively similar quality. The small individual variations 

also include differences between the intrinsic quality of the input image, which can be 

noticed by visual inspection in Figure 10). 

 
Registration of a volumetric atlas to MEBRAINS. 

We here describe the result of the registration of the frequently used D99 atlas to 

MEBRAINS. We first registered the D99 template to MEBRAINS as described above 

using MB or ANTS and applied the “Try-N-select-winner” strategy (see methods). The 

resulting transformation objects (volume/matrix) were then applied to the associated 

D99 atlas using a nearest neighbourhood resampling algorithm (MB, Figure 12A; 

ANTS Figure 12B). Both registrations represent a good starting point for human-

curated refinements. 

We also performed the same registration (D99 atlas to MEBRAINS) using the “run-N-

select-high-probability-values” strategy (Figure 12C). Because this method yields more 

information, given by the probability distribution of the voxel intensity values, than the 

single registration methods (Figure 12A, B), the resulting registration is more reliable. 
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Registration of a surface-based atlas to MEBRAINS. 

Since the 3D cyto- and receptor architectonically informed maps of the macaque motor, 

premotor and parietal cortex are associated with the Yerkes19 surface template, it was 

necessary to warp them to the MEBRAINS surface template using FreeSurfer, thereby 

establishing a link between both spaces. The ensuing labels can be visualized on the 

folded (Figure 9B) or flattened (Figure 9C) versions of the MEBRAINS surface 

template. Finally, they were transferred to the MEBRAINS volumetric template (Figure 

9B). 

 

Deep learning-based neuroimaging pipeline for automated processing of 
monkey brain MRI scans  
Automated brain extraction tool for nonhuman primates (U-NET) (Wang et al., 2021) 

We performed supplementary training and updated the 7 existing models in the U-Net 

brain extraction package using 34 T1 images for training and 66 T1 images to test the 

mask prediction performances (see methods). The model training reached a dice score 

of 0.9882  0.0005 (mean  SEM) in epochs ranging between 35 to 39. The 7 upgraded 

models correctly predicted the mask in 85.71  1.35 % (mean  SEM) of the test brains 

and 94.96  0.84 % of the trained brains. Moreover, more than one of the used models 

gave good predictions for the mask of the same brain. Accordingly, of 12 models used 

to predict the mask for each brain, 8.65  0.27 (mean  SEM) made good predictions 

for training and 7.97  0.44 for testing data. Therefore, there is a substantial pool of 

good mask predictions for each brain allowing the use of either "try-N-select-winner” 

or “run-N-select-high-probability-values” strategies for brain extraction. 

Figure 13 provides two example results of the winner for an ‘easy”, good quality 

anatomy, (Figure 13A) and for a more “difficult” lower quality anatomy (Figure 13C). 

As can be seen in Figure 13B, the dataset with the “difficult” anatomy requires longer 

training time than the “easy” anatomy before reaching the optimal solution. The 

example also emphasizes the robustness of the model, which is largely independent 

of the quality of the input data. 
 

Relative quality of the MEBRAINS template 
To quantitatively compare the quality of our MEBRAINS and ANTS10 templates to 

each other and to that of the two major existing templates, we segmented several 
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anatomical structures from four T1 templates (MEBRAINS_T1, ANTS10_T1, NMT 

v2.0, Yerkes19) and two T1/T2 datasets (MEBRAINS_T1/T2, ANTS10_T1/T2) 

(Figures 14A). Depending on the quality of the template, the exact border of a structure 

may be difficult to estimate. Therefore, to be conservative in our comparison, we 

excluded the 3 most external voxels at each boundary of each of these compartments: 

for example, 3 voxels at the pial and 3 at the grey-white matter boundary for the cortical 

ribbon. As an example, Figure 14B shows the result of this process for MEBRAINS_T1. 

We used two different indices, inspired by (Seidlitz et al., 2018), to compare the quality 

of the templates (C2N and KI, see methods). The results presented in Figures 15 and 

16 and Tables 2 and 3, support a few important conclusions regarding the possibility 

to distinguish different anatomical substructures of the brain in the different templates. 

First, the multi-modal templates MEBRAINS_T1/T2 and ANTS10_T1/T2 carry far more 

information compared to the unimodal ones. Hence, templates based on a combination 

of modalities allow improved segmentation of important brain structures. This is 

reflected in the larger C2N and KI values for the T1/T2 images. Notice that 

MEBRAINS_T1/T2 and ANTS10_T1/T2 (colored red and greed in Tables 2 and 3, 

respectively) outperform all other templates. Second, parameters for the T1-based 

templates show two different trends: C2N yields the largest values for the 

MEBRAINS_T1 template, while KI is dominated by NMT v2.0 (colored blue in Tables 

2 and 3, respectively). Third, although NMT v2.0 is on par with the unimodal (T1) 

MEBRAINS, as shown by C2N and KI values, the multi-modal (T1/T2) approach in 

MEBRAINS provides a substantial advantage to all templates. Finally, comparison 

between MEBRAINS and ANTS10 demonstrates the superiority of MB compared to 

the ANTS for template generation. 

 

DISCUSSION 
We built a macaque brain template, MEBRAINS, in an attempt to mitigate common 

limitations of existing macaque templates. MEBRAINS is a multi-modal population 

based template that integrated relatively high resolution T1, T2 and CT modalities by 

using the MB toolbox (Brudfors et al., 2020). In addition, we developed both a 

volumetric and surface template. This approach will facilitate the combination of 

volumetric and surface data and enable the generation of flattened 2D maps of the 

cortex. As MEBRAINS is embedded in the EBRAINS environment which also houses 

human and rodent templates, and because other existing macaque templates have 
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been registered to MEBRAINS, this will also expedite comparative research between 

macaques, humans and rodents.  

Of all the available tools, we found the MB toolbox (https://github.com/WTCN-

computational-anatomy-group/mb) to be the most optimal because it supports the 

diffeomorphic alignment of multiple medical image modalities into a common reference 

space, and thus the generation of multimodal templates in a general and entirely 

unsupervised framework (Blaiotta et al., 2018). The MB model used information from 

both the T1 and T2 sequences recorded in the same scanning sessions for the same 

monkeys to learn a latent global multimodal average representation which exploited 

the contrasts offered by each of the modalities. In a subsequent step, the individual T1 

and T2 datasets were registered at the tissue level to this representation. Thereby, the 

T1 and T2 templates were simultaneously generated and both shape and appearance 

variability were accounted for during this process. Finally, the CT data from the same 

monkeys was registered to the T1/T2 templates using the registration objects 

generated during this second step. 

To ensure the quality of both the data used to create MEBRAINS, and of the template 

itself, we applied a large spectrum of methods including those described in Marcus et 

al., 2013 (Marcus et al., 2013), tools borrowed from the image processing field tuned 

to evaluate image quality (e.g., see Figures 11, 13, 15, 16), and careful visual curation. 

Simple visual inspection of all the templates included in the present analysis (Figure 

10) shows that the resolution and GM/WM contrast of MEBRAINS reveal a level of 

anatomical granularity and sharpness comparable to that of the NMT V2.0 template 

(Seidlitz et al., 2018), which is higher than that of most of the other templates, including 

the ANTS version of our template (ANTS10). This subjective impression was 

corroborated by the quantitative evaluation (Figures 15, 16), showing that the multi-

modal MEBRAINS template represents anatomical details better than the other 

templates. The MEBRAINS_T1/T2 template presented the highest C2N values, 

indicating that the segmented structures have better signal to noise ratio compared to 

the other templates. Moreover, the multimodal character of MEBRAINS increases the 

discriminative power: MEBRAINS_T1/T2 yielded not only higher C2N (Jang et al., 

2022) but also KI values compared to the remaining templates, including 

ANTS10_T1/T2. The latter finding is particularly interesting, because MEBRAINS and 

ANTS10 were constructed from the same 10 subjects. Specifically, this difference 

highlights the usefulness of multimodal approaches to construct brain templates. 
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Beyond the goal of creating a qualitative template, we adapted existing tools to register 

data to MEBRAINS (Figure 9, 12), to segment major anatomical structures (Figure 7, 

9, 13, 14) and to generate surfaces (Figure 7C, 8). This included the adaptation of 

deep neural network approaches (U-NET), some of them also used in human research 

(FastServer) for processing monkey data. 

Finally, we started to populate the MEBRAINS with previously published architectonic 

data encompassing cyto- and receptor architectonically informed maps of the occipital, 

parietal and frontal lobes (Niu et al., 2020; Niu et al., 2021; Rapan et al., 2021; Rapan 

et al., 2023). The comparison of such data with other parcellation schemes and future 

data sets will advance objective discussions about parcellations. In the future, we aim 

to refine the template by increasing the number of T1 and T2 images and by adding 

very high-resolution postmortem MRI anatomies. We also aim to register other 

functional data (e.g., probabilistic retinotopy data, category selective fMRI data, etc.) 

and increase the number of automatically segmented structures. Ultimately, we aim to 

obtain enough data to have a robust training set for our deep-learning based 

automated segmentation and registration of macaque data to MEBRAINS and any 

other template. 

The MEBRAINS template represents the cornerstone of the “MEBRAINS Multilevel 

Macaque Brain Atlas” (https://atlases.ebrains.eu/viewer/monkey) developed in the 

framework of the Human Brain Project, which is freely available to the neuroscientific 

community via the interactive siibra-explorer on the EBRAINS platform 

(https://atlases.ebrains.eu/viewer/monkey). Thus, MEBRAINS constitutes a spatial 

reference system to which a myriad of structural and functional in vivo and post mortem 

datasets with different degrees of spatial and temporal resolution will be anchored. 

Examples of in vivo datasets are electrophysiological, probabilistic retinotopy, category 

selective or resting state fMRI data as well as DTI datasets. Post mortem datasets 

include 3D-reconstructions of sections processed for visualization of cell bodies, 

myelinated fibres, neurotransmitter receptors distribution patterns or that of their 

subunits and/or the corresponding encoding genes, tractography datasets, as well as 

architectonic parcellation schemes of the macaque monkey brain. In this framework, 

the “Julich Brain Macaque Maps” (Niu et al., 2020; Niu et al., 2021; Rapan et al., 2021), 

which are based on the quantitative analysis of differences in the distribution patterns 

of cell bodies and of multiple types of classical neurotransmitters, and to date had 

solely been available via the Yerkes19 surface template (Donahue et al., 2018; Van 
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Essen et al., 2012), have now been registered to the MEBRAINS template. The maps 

and data associated with the MEBRAINS template can be used as entry point for 

higher level meta-analyses, or for guiding functional and interventional studies in 

MEBRAINS space. Furthermore, the richness of the EBRAINS meta-platform hosting 

the “MEBRAINS Multilevel Macaque Brain Atlas” and also representing humans and 

rodents in a unitary context enable efficient inter-species meta-analytical studies. Thus, 

MEBRAINS not only constitutes a technical improvement compared to previously 

published templates, but also facilitates cross-species comparisons. 

 

In conclusion, via MEBRAINS we provide a novel population-based template of the 

macaque brain which was created using a multimodal approach and T1 and T2-

weighted images. Quantitative evaluation of its quality demonstrated that it scores 

better than other unimodal templates. MEBRAINS constitutes the cornerstone of the 

“MEBRAINS Multilevel Macaque Brain Atlas” and has been populated with the cyto- 

and receptor-architectonically informed “Julich Brain Macaque Maps”. Importantly, 

MEBRAINS has been embedded in the framework of HBP’s EBRAINS platform, where 

it will enable the integration and analysis of multiple datasets of different spatio-

temporal scales, and the comparison with other species. 

DATA AVAILABILITY 
The volumetric and surface representation files of the MEBRAINS template are 

provided as supplementary files accompanying the manuscript and are also made 

freely available via the Human Brain Project platform EBRAINS 

(https://doi.org/10.25493/VS6E-7KR).  

 

 

CODE AVAILABILITY 
The following code is available on GitHub or software package webpages: 

- Code used for creation of the templates is publicly available at 

(https://github.com/WTCN-computational-anatomy-group/mb). It requires the 

toolbox multi-brain for SPM12 and the commercial software MATLAB (Version R-

2018b). The repository includes example MATLAB scripts for template generation, 

registration to the template, different images co-registration 
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- FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall),  

ANTS (http://stnava.github.io/ANTs/), 

FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), 

AFNI (https://afni.nimh.nih.gov/), 

MINC (https://www.mcgill.ca/bic/software/minc), 

ART (https://www.nitric.org/projects/art/), 

Jip (http://www.nitrc.org/projects/jip), 

MRIcron (https://www.nitrc.org/projects/mricron), 

and ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) are open source 

publicly available. 

- U-Net Brain extraction tool for nonhuman primates 

(https://github.com/HumanBrainED/NHP-BrainExtraction) is publicly available and 

requires a python environment. Authors will provide by request the supplementary 

trained models. 

- Code and transforms between MEBRAINS and other currently commonly used 

macaque templates can be found under the RheMAP site (https://gin.g-

node.org/ChrisKlink/RheMAP/src/master/notebooks/macaque_template_warps.ip

yn). 
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TABLES 
Table 1. Non-exhaustive list of some of the most frequently used macaque templates. 

All templates were obtained from Macaca mulatta monkeys, except for the MNI 

template, which was built from Macaca mulatta (Mm) and Macaca fascicularis (Mf) 

brain scans. Abbreviations: N/A = not available; Res. = Resolution; Skull str. = the 

template is available in the original format (OF) or only in a skull stripped (SSF) format. 

 
Template Skull 

str. 
Sequence Res. 

(mm) 
Number 
of brains 

Associated 
atlas(es) 

Volume  
format 

Surface  
format 

NMT (Jung et 
al., 2021; 

Seidlitz et al., 
2018) 

v1.2/v1.3/v2.0 

OF T1 0.25 31 D99-SL 
(Reveley et 
al., 2017)  
CHARM 

(Jung et al., 
2021) 
SARM 

(Hartig et al., 
2021) 

NIFTI GIFTI 

D99 (Reveley 
et al., 2017; 

Saleem et al., 
2021) v1/v2 

SSF T1, T2, DTI, 
MAP-MRI, 

MTR 

0.25 1 D99-SL NIFTI GIFTI 

INIA19 
(Rohlfing et 
al., 2012) 

OF T1 0.50 19 Neuromaps NIFTI N/A 

MNI (Frey et 
al., 2011) 

OF T1 0.25 18 Mf 
7Mm 

Paxinos MINC, 
NIFTI 

N/A 

Yerkes19 
(Donahue et 

al., 2018; Van 
Essen et al., 

2012) 

OF T1, T2 0.50 19 F99(Van 
Essen, 2004) 

NIFTI, 
MGZ 

GIFTI, 
MGZ 

112RM-SL 
(McLaren et 

al., 2009) 

SSF T1, T2* 0.50 112 
(McLaren 

et al., 
2009)* 

D99-SL 
(Reveley et 
al., 2017) 
F99 (Van 

Essen, 2004) 

NIFTI N/A 

UNC-Emory 
atlas (Shi et 
al., 2016) 

OF T1, T2, DTI 0.60 40  NRRD N/A 

ONPRC18 
(Weiss et al., 

2021) 

SSF T1, T2, DTI 0.50 18 ONPRC18 NIFTI N/A 

F99 (Van 
Essen, 2004) 

SSF T1 0.50 1  NIFTI GIFTI 

* T2-weighted scans only available for 9 of the 112 animals 
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Table 2. C2N median values for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1, 

ANTS10_T1/T2, NMT v2.0 and Yerkes19. All pairs of medians are significantly 

different (p < 10-8) for each sub-structure. Fonts colored red, green (for T1/T2 images) 

and blue (for T1 images) outline the largest values of C2N. Abbreviations: Am = 

Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen; 

GM = cortical Gray-Matter. 

C2N Cd Pu Am NAc Cl GM 
MEBRAINS_T1 2.06 1.42 2.82 2.34 2.32 2.26 
MEBRAINS_T1/T2 4.31 3.13 5.81 4.97 5.06 4.71 
ANTS10_T1 1.20 0.89 1.27 1.19 1.20 1.02 

ANTS10_T1/T2 4.10 3.01 4.73 4.34 4.44 4.09 
NMT v2.0 1.77 1.04 2.05 1.73 1.67 1.74 

Yerkes19 1.79 1.40 2.03 1.82 1.47 1.63 

 
 

Table 3. KI median values. for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1, 

ANTS10_T1/T2, NMT v2.0 and Yerkes19. All pairs of medians are significantly 

different (p < 10-8) for each sub-structure. Fonts colored red, green (for T1/T2 images) 

and blue (for T1 images) outline the largest values of KI. Abbreviations: Am = 

Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen; 

GM = cortical Gray-Matter 

KI Cd Pu Am NAc Cl GM 
MEBRAINS_T1 0.33 0.23 0.45 0.37 0.37 0.36 

MEBRAINS_T1/T2 0.69 0.50 0.93 0.79 0.81 0.75 
ANTS10_T1 0.28 0.21 0.30 0.28 0.28 0.24 

ANTS10_T1/T2 0.66 0.49 0.76 0.70 0.72 0.66 
NMT v2.0 0.51 0.30 0.59 0.50 0.48 0.50 
Yerkes19 0.40 0.32 0.46 0.41 0.33 0.37 
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FIGURES 
Figure 1. Number of publications per year related to brain templates in macaque 

monkeys. A PubMed search query was performed November 2023 using the following 

keyword combination: (“monkey” OR “macaque” OR “NHP” OR “non-human primate”) 

AND (“template” OR “atlas”) AND (brain). Polynomial fit with R2 = 0.8411.   

 

 
 

Figure 2. Overview of the pipeline used for the generation of a population-based 

template that represents an average of high-resolution structural T1 and T2 MRI scans 

as well as CT. 
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Figure 3. Overview of the MB model (adapted from Figure 1 of Brudfors et al., 2020). 

(A) Distribution of brains (T1 and T2 images; monkeys X1,...XN). (B(i)) Groupwise 

learning of the optimal population average. (B(ii)) Pairwise deformations obtained by 

composing deformations via the optimal population average. Here, application of ψi-1 

and of ψj enables registration of brain xi to the optimal population average, and of the 

optimal population average to brain xj, respectively, whereas use of ψi-1 + ψj results in 

the registration of brain xi to brain xj. 

 
 
Figure 4. Three orthogonal sections of the volumetric MEBRAINS_T1 (A) and 

MEBRAINS_T2 (B) templates. The NIFTI-volumes used to create this figure can be 

found in supplementary material, and are also made publicly available via the 

EBRAINS platform (https://doi.org/10.25493/VS6E-7KR). 
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Figure 5. Three orthogonal sections (A-C) and 3D rendering (D) of the volumetric 

MEBRAINS_CT template. The corresponding NIFTI-volume can be found in the 

supplementary material, and is also made publicly available via the EBRAINS platform 

(https://doi.org/10.25493/VS6E-7KR). 
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Figure 6. Three orthogonal sections of the ANTS10 templates generated from T1 (A) 

and T2 (B) images. To facilitate comparison with the corresponding MEBRAINS 

templates, the sections shown are the same as those depicted in Figure 1. 
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Figure 7. Generation of pial and white matter surfaces using MB (A, B) and 

postprocessing with FreeSurfer (C). (A) White matter mask overlaid on the 

MEBRAINS_T1 template. (B) Gray matter mask overlaid on the MEBRAINS_T1 

template. (C) Pial (magenta) and white matter (yellow) boundaries overlaid on the 

MEBRAINS_T1 template. The sagittal, coronal, and horizontal sections depicted 

correspond to coordinates x13, y0 and z4, respectively. 
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Figure 8. MEBRAINS surface templates representing the pial (A) and white matter (B) 

brain surfaces as well that of the skull (C). The corresponding gifti files can be found 

in the supplementary material, and are also made publicly available via the EBRAINS 

platform (https://doi.org/10.25493/VS6E-7KR). 
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Figure 9. (A) Human curated segmentation of the cortical ribbon, white matter and 

lateral ventricles, as well as of diverse subcortical nuclei, and the anterior commissure. 

(B,C,D) Areas of the macaque inferior parietal lobule (Niu et al., 2021) and of the motor 

and pre-motor cortex (Rapan et al., 2021) warped from the Yerkes19 template to 

MEBRAINS. Areas are overlaid on the folded surface of MEBRAINS in (B), the flat 

maps in (C), and exemplary sections of MEBRAINS_T1 are shown in (D). 

Abbreviations: AC = anterior commissure; Am = Amygdala; CC = cerebral cortex; 

Cd=Caudate nucleus; Cl = Claustrum; GP = globus pallidus; LV = lateral ventricle; NAc 

= Nucleus accumbens; Pu=Putamen. The sagittal, coronal, and horizontal sections 

depicted in A and D correspond to coordinates x13, y0 and z4, respectively. 
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Figure 10. Eight of commonly used rhesus macaque brain templates (NMT v2.0 

(Seidlitz et al., 2018), Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012), D99 

(Reveley et al., 2017), MNI (Frey et al., 2011), F99 (Van Essen, 2004), INIA19 

(Rohlfing et al., 2012), ONPRC18 (Weiss et al., 2021) and 112RM-SL (McLaren et al., 

2009)), as well as our ANTS10_T1 volume (i.e., the template built with ANTS using the 

same 10 datasets as MEBRAINS_T1) were registered to MEBRAINS using ANTS. The 

meta-template represents the average of all these datasets with the exception of 

112RM-SL. 
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Figure 11. Pearson correlation and “1 – Focal Entropy Difference” (scaled to facilitate 

comparisons with the correlation method: 0 – total dissimilarity; 1 – total similarity) 

calculated for the reference anatomy MEBRAINS compared with the following 

templates: MEMRAINS, ANTS10_T1, NMT v2.0, Yerkes19, D99, MNI, F99, INIA19, 

ONPRC18 and 112RM-SL. Comparison of MEBRAINS with itself (value 1) provides 

the reference for the ideal registration. 
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Figure 12. D99 atlas registered to MEBRAINS using the MB (A), ANTS (B) and “run-

N-select-high-probability-values” (C) approaches. The different registrations of the 

atlas are overlaid on the MEBRAINS template. 

 
 

  



48 
 

Figure 13. Masking performance of the U-net convolutional neural network using one 

example model. The predicted mask at the end of the training for an “easy” anatomy 

(A) and a “difficult” anatomy (C), and the dice score during the training (B). The 

performance for the “difficult” anatomy (red line in B) reached the optimal performance 

later than for the “easy” anatomy (green line in B). The maximum average dice score 

is 0.9887, and was reached in epoch 38. 
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Figure 14. (A) Anatomies of the six templates used to quantitatively compare the 

quality of the EBRAINS template. (B) Structures that were selected for the 

MEBRAINS_T1 template: Am = Amygdala; Cd=Caudate; Cl = Claustrum; GM = 

cortical Gray Matter; Pu=Putamen; WM = White Matter. 

 
 

  



50 
 

Figure 15. C2N parameter distribution of means for the templates shown in Table 2 

and Figure 14A. Parameters were calculated for the 6 selected sub-structures 

separately, and numbers represent the median values. 
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Figure 16. KI parameter distribution of means for the templates shown in Table 3 and 

Figure 14. Parameters were calculated for the 6 selected sub-structures separately, 

and numbers represent the median values. 

 


